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Abstract: Mid-infrared spectroscopy together with sequential injection analysis (SIA)

and partial least squares (PLS) regression analysis was used to monitor acetone-

butanol-ethanol (ABE) fermentations under different fermentation conditions. Five

analytes were simultaneously predicted (acetone, acetate, butyrate, n-butanol, and

glucose). In order to compare the overall model prediction ability, a relative average
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of the root mean square error of prediction (RMSEP) across all five analytes was

employed. To form a PLS model devoid of any cross-correlations between analytes,

a synthetic calibration data set was created by the SIA system. As a test of their robust-

ness, PLS models from synthetic samples and those from real fermentation samples

were compared and used to predict samples from the opposite data set and from inde-

pendent “acid-crash” fermentations. The PLS model developed from the synthetic

samples proved to be far more robust and accurate and used fewer factors than PLS

models from the real fermentations, which were found to contain analyte cross-

correlations. The use of synthetic data enabled more accurate selection of factors

and showed the importance of investigating spectral regression coefficients plots to

aid and confirm appropriate factor selection. In addition, an alternative method of

factor selection was proposed, using a “similarity measure” between the regression

coefficient plots of factors for certain analytes and their standard spectra. Predictions

using this method of factor selection over the common “minimum from an error vs.

factor” plot proved to be more accurate and used far fewer factors.

Keywords: ABE fermentation, analyte cross-correlations, mid-infrared spectroscopy

(FTIR), PLS

INTRODUCTION

Mid-infrared spectroscopy in the analysis of fermentations was introduced in

the early 1980s for the analysis of antibiotic fermentation samples,[1] analysis

of model fermentations,[2] feasibility studies for real-time process control of

fermentations,[3] and the investigation of pyruvic acid assimilation by

Escherichia coli.[4]

To date, near-infrared spectroscopy has been more widely applied to

fermentation systems[5 – 9] than mid-infrared spectroscopy due to the ease of

sample handling, which allows aqueous solutions to be sampled in flow-

through cells with pathlengths in the millimeter and centimeter ranges, as

opposed to the few micrometers traditionally required in the mid-infrared.

In addition, the ready availability of fiberoptic materials in the near-infrared

has made in situ measurements practical.[5] Although near-infrared spec-

troscopy can have sample handling advantages, it is lacking in qualitative

spectral information because spectra generally consist of broad overlapping

spectral features with little or no qualitative information. Mid-infrared

spectroscopy on the other hand is rich in both quantitative and qualitative

spectral information, making the interpretation of the spectral changes over

the course of a fermentation much easier because individual bands can be

assigned to particular chemical moieties of the analytes.

With recent improvements in instrumentation and in particular in

attenuated total reflection (ATR) probes for in situ measurement of

chemical reactions, the number of publications concerned with mid-infrared

spectroscopy for fermentations monitoring has increased.[3,10 – 17] The use of

an ATR sampling probe is most advantageous when dealing with aqueous
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and particulate containing solutions, because the very small and constant

effective pathlength of the ATR eliminates the need for transmission cells.

ATR accessories typically have a depth of penetration of 1–2mm,

providing for very small effective pathlengths, therefore making for the

easy subtraction or ratioing of highly absorbing matrices such as water. One

important practical problem associated with the use of in situ ATR probes

is the potential for the development of biofilms on the probe surface, which

can interfere with the intended monitoring of the liquid samples.

For evaluation of the Fourier transform infrared (FTIR) spectroscopy

recorded from fermentations, multivariate statistical techniques, most

commonly partial least squares (PLS) regression, have been employed.

These data evaluation methods enable the simultaneous determination of

several analytes from within a complex media background. However, the

PLS method developed needs to be carefully prepared and analyzed to

ensure that a robust calibration model covering all possible combinations of

analyte concentrations is created. In this context, the analysis of possible

analyte cross-correlations is particularly useful. Cross-correlations between

various analytes within fermentations are well-known and are to be

expected due to the stoichiometry of the physiological processes of a micro-

biological cell. For example, for the acetone-butanol-ethanol (ABE)

fermentation[18 – 20] used in this study and previously.[17] essentially glucose

is consumed, as acetone and n-butanol are produced. Therefore, the glucose

concentration is negatively correlated with acetone and n-butanol. Also,

because acetone and n-butanol are produced at the same time and from the

same source, they are positively correlated with each other, with approxi-

mately twice as much n-butanol as acetone being produced. Correlations

with or among acetate and butyrate, which are the other two analytes that

can be produced or consumed during glucose consumption, are much less

pronounced. These two components are present in relatively lower concen-

trations, with, in general, their concentrations starting off low and slowly

decreasing over the course of the fermentation.

For the sake of model robustness, it is important to carefully examine the

PLS model for evidence that only the spectral features of the analyte of

interest are being used in prediction calculations. The presence of analyte

cross-correlations in the calibration can significantly degrade the robustness

of the developed model. This is of particular importance when fermentations

are analyzed that proceed differently to those fermentations on which the

calibration has been based.

A possible solution to this problem is the use of synthetic samples devoid

of analyte cross-correlations for the construction of the PLS model. In this

paper, the impact of analyte cross-correlations on method robustness is

demonstrated. Furthermore, it is shown how the spectral regression

coefficients plots can efficiently be used to detect analyte cross-correlations

present in the calibration model. This paper follows on from a previous

study on the same fermentation system.[17]
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EXPERIMENTAL

Organism

Clostridium beijerinckii NRRL B592 (capable of producing a mixture of

acetone, n-butanol, and ethanol) was obtained from the laboratory of

J. R. Gapes (Institute of Chemical Engineering, Fuel and Environmental

Technology, Vienna University of Technology, Vienna, Austria). A

previous high-solvent-producing and well-sporulated batch fermentation on

semisynthetic medium was used as spore stock.

Medium

A modified semisynthetic medium according to Ref.[21] was used for both

inoculum and batch cultures and contained per liter of distilled water the

following: glucose 60.0 g, yeast extract 5.0 g, ammonium acetate 3.0 g,

KH2PO4 1.0 g, K2HPO4 0.8 g, MgSO4
. 7H2O 1.0 g, cysteine hydrochloride

0.5 g, FeSO4
. 7H2O, and p-aminobenzoic acid 10 mg.

Inoculum Preparation

The medium for inoculation was made anaerobic by bubbling oxygen-free

sterile nitrogen for 10 min before autoclaving at 105 Pa (1218C) for 16 min.

The inoculum precultures were prepared by injecting 10 mL of a spore sus-

pension into 330 mL of media in a 500 mL screw-cap bottle plugged with a

rubber stopper into which was placed a needle connected to a bicycle valve

via a short length of tubing. This acted as a pressure release valve to release

the buildup of carbon dioxide and hydrogen during fermentation. This

inoculum preculture was then heat shocked at 858C for 10 min and cooled

rapidly in cold water before being placed in a 358C incubator.

Batch Cultures in the Bioreactor

Fermentations No. 1, No. 2, and No. 3 “Normal”

The bioreactor was a three-necked 2-L glass vessel with a working volume of

1700 mL. All contents of the bioreactor including the pH probe and polytetra-

fluoroethylene (PTFE) sampling tubing (for mid-infrared spectroscopic measure-

ments) were autoclaved after the medium was made anaerobic by bubbling

oxygen-free sterile nitrogen for 20 min. After autoclaving at 105 Pa (1218C) for

25 min and until inoculation, oxygen-free sterile nitrogen was bubbled through

the medium to maintain anaerobic conditions while sitting the bioreactor in a
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cold-waterbath. The batch culture was brought up to358C ina thermostated water

bath before being inoculated with 100 mL of a 20–24 hr inoculum preculture.

The pH was continuously monitored on-line, with optical density (615 nm,

1 cm plastic cuvette) measurements being taken for each sample. Samples

were collected (both spectra and for reference analysis) at regular intervals

over the course of the fermentation, up to 50 hr. Each individual fermentation

had 10–12 complete samples (spectra and reference analysis). The data from

fermentation no. 3 has been previously reported in Ref.[17].

Fermentations No. 4 and No. 5 “Acid Crash”

These fermentation were performed exactly as for fermentations 1–3, except

that the pH was controlled at pH 7 via the automated addition of 2 M KOH.

This was done in an attempt to induce an “acid-crash” fermentation, as it is

believed that the concentration of free acids play an important role in the

onset of an “acid crash.”[22] Spectra and samples for reference analysis

were collected at regular intervals throughout the course of the fermentation.

Between 7 and 8 complete samples (spectra and reference analysis) were

collected for each fermentation.

A summary of the data sets used is present in Table 1.

Preparation and Measurement of Synthetic Calibration Standards No. 6

A full factorial design employing five variables (the five analytes: acetone,

acetate, butyrate, n-butanol, and glucose) at two concentration levels (high and

low concentrations, where the lower concentrations were one-fifth of the

higher concentrations) was calculated giving a total of 32 combinations (25).

This full factorial design calculates all statistically possible combinations of the

high and low levels for all five analytes, hence giving a sample set in which all

cross-correlations between the analyte concentrations have been removed.

All analyte stock solutions for the automated preparation of the synthetic

calibration set were made up in volumetric flasks using distilled water. The

media background preparation method was modified from that described

Table 1. Summary of fermentations/experiments used to compile each data set

Data

set

Number of

samples

Fermentation/experiments from

which data were collected Fermentation type

A 35 1, 2, & 3 Normal fermentation

B 15 4 & 5 Acid-crash fermentation

C 50 1, 2, 3, 4, & 5 Normal & acid-crash

fermentation

Syn. 32 6 Synthetic mixtures
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earlier with the acetate omitted, because this was added from an acetate stock

solution, and only 12 g/L of glucose monohydrate was added to act as

the “low” glucose sample as opposed to the normal 60 g/L. To reduce the

complexity, combinations of high and low glucose and n-butanol were pre-

prepared in four (hiGhiB, hiGLoB, loGhiB, loGloB) 320-mL volumes in

500-mL Schott bottles. The n-butanol was added aseptically to the media

background after autoclaving. An additional 15.36 g of glucose monohydrate

was added to the bottles that required a “high” glucose level. The standard

solutions and all other reagents were of analytical grade quality. The acetate

and butyrate solutions were prepared from their acids (acetic acid and

n-butyric acid, respectively) and were neutralized by the addition of NaOH

pellets. The final glucose concentrations were determined by the reference

enzymatic assay method, because the exact glucose content of glucose mono-

hydrate is not known. The acetone, acetate, and butyrate solutions were added

automatically by the sequential injection analysis (SIA) system to the media

background (containing the glucose and n-butanol) in order to obtain the

desired final concentrations of the solutions to be measured. The final concen-

trations of the analytes and the stock solutions is presented in Table 2.

For analysis of the spectral regression coefficients plots, FTIR spectra of

pure aqueous standard solutions of the analytes were also required. Standards

were prepared with the following concentrations: acetone, 8 g/L; n-butanol,

14 g/L; glucose, 60 g/L; acetic acid, 4 g/L; and n-butyric acid, 4 g/L. The

pH of the acid solutions were increased to approximately 12, by the

addition of NaOH pellets, to deprotonate all of the acids.

The spectra of all of pure aqueous standard solutions and samples for the

synthetic calibration set were collected in the exact same manner as the spectra

for real fermentation samples.

Sequential Injection Analysis Manifold Coupled to the FTIR

Spectrometer

The SIA system was set up with a Cavro XP 3000 syringe pump (syringe size

2500mL), 4-mL holding coil, and a Valco 14 port selection valve equipped

Table 2. Summary of synthetic calibration sample concentrations

High concentration (g/L) Low concentration (g/L)

Acetone 6.00 1.20

Acetate 4.00 0.80

Butyrate 4.00 0.80

n-Butanol 15.00 3.00

Glucose 49.0 (60.0)a 9.4 (12.0)a

aFigures in parentheses indicate the actual amount of glucose

monohydrate weighed out.
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with an electric microactuator. PTFE tubing (i.d. 0.75 mm) was used except

for the sampling tubing from the fermenter, which had an i.d. of 0.97 mm.

A Bruker IFS-55 spectrometer (Bruker Optik, Ettlingen, Germany) equipped

with liquid nitrogen cooled mercury-cadmium-telluride (MCT) detector was

used for spectral acquisition. A diamond ATR cell (Spectroscopy Central,

Warrington, England) was employed with an in-house built flow-through

accessory. This enables the pumping through of solutions over the ATR

diamond surface with minimal dead-volume. All tubings and fittings were

obtained from Global FIA (Gig Harbour, WA, USA). The SIA system was

controlled by a personal computer, using the AnalySIA software package

from the Turku Centre for Biotechnology (Åbo, Akademi University and

University of Turku). This software was also used to trigger the FTIR spec-

trometer for the exact timing of the collection of spectra. A schematic

diagram showing the experimental system is shown in Fig. 1.

FTIR On-line Fermentation Monitoring

A sample measurement cycle involves the aspiration of 1.5 mL of sample

directly from the fermenter into the holding coil, followed by a plug of

250mL of 1 M NaOH and 250mL of distilled water. The addition of NaOH

is necessary to bring the pH of the solution to be analyzed to approximately

10. This is to ensure that all of the acids (acetate and butyrate) are in a

deprotonated state, well above their pKa’s of 4.75 and 4.82, respectively.

After pH adjustment, 2000mL of this solution is then transferred into the

Figure 1. Schematic of SIA system.

Analysis of Acetone-Butanol-Ethanol Fermentation 683

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
2
:
5
9
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



mixing chamber where it is stirred by a small magnetic bead for 2 min. This

allows sufficient time for degassing (CO2) and complete mixing. Sub-

sequently, 1.7 mL of this solution is pumped into the ATR flow-through cell

at a rate of 720mL/min, during which time the spectrometer is automatically

triggered to collect the required spectra. Spectra were collected between 4000

and 700 cm21 at 8 cm21 resolution with 128 scans. A macro was written that

enabled the recording of spectra upon receiving a trigger from the AnalySIA

software. New background spectra were collected with distilled water in the

cell, before the pumping through of each sample. Each sample was injected

three times with three spectra recorded from each sample injection, giving

in total nine spectra for each sampling. The triplicate spectra for each

injection were averaged and used in the subsequent analysis. After spectral

acquisition, all tubing, mixing chamber, and the ATR cell were washed,

using the SIA setup with 2.5 mL of an aqueous 5% Na2CO3 solution to

remove any biofilms. Subsequently, the flow system is washed again twice

with 2.5 mL of distilled water. All these steps are performed automatically

by the computer-controlled SIA setup.

Reference Measurements

The solvents (acetone and n-butanol) together with the acids (acetic and

butyric) were determined simultaneously by gas chromatography based on a

modified method of Thompson et al.[23] To 1 mL of clarified sample (centri-

fuged at 25,000 � g for 5 min) is added from a Pasteur pipette 1 drop of

concentrated sulfuric acid and 100mL of a 40 g/L n-propanol internal

standard solution. A model GC-9A (Shimadzu Corp., Kyoto, Japan) GC

was used, equipped with a flame ionization detector and a glass column

(3.2 mm by 2.6 m) packed with Chromosorb 101 (Supelco, Inc., Bellefonte,

PA, USA) with nitrogen gas (80 mL/min) as the carrier gas. A temperature

program: 1508C (11.5 min), rising at 308C/min to 1908C, for 7.2 min was

used. The injector port temperature was set to 2208C and the detector tempera-

ture to 1708C. Glucose was determined using the enzymatic UV method

(340 nm) test kit (Boehringer Mannheim cat. no. 716251, R-Biopharm

GmbH, Darmstadt, Germany). All reference analyses were performed in

triplicate. The precision of the reference methods compared with the FTIR

predicted results have been reported previously.[17]

Data Analysis

The multivariative statistical method of partial least squares (mean-centered)

was employed to create calibration models to relate the spectra to the known

and established reference measurements. A PLS-1 method was used to create

models for data sets where only one variable is being predicted. This is the
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case where individual spectral window per analyte is to be employed. A PLS-2

method was employed where spectral region 1 (3000–2800, 1800–800 cm21)

was used for all five analytes. This method enabled one model to be calculated

for more than one analyte at a time.

All PLS models were developed with a leave-out-one cross-validation

process (leaves one sample at a time out of the model-forming calculations).

This sample is then predicted using this newly created model, and its predic-

tion values are compared to the reference values. This process is repeated until

all the samples have been left out once. It is by this method that the predicted

versus measured values plot is constructed and prediction error versus factor

plot are determined. It is from the minimum in this latter plot that the

“optimum” number of factors for predictions are commonly chosen.

With large data sets and a number of measures of predictive model quality

(as determined from a predicted vs. measure plot), such as root mean square

error (RMSEP), R2, slope, and offset, it is difficult to compare the performance

of the various models predicting for the various data sets. Consequently, in

order to more easily compare the results from each model, a measure of

model accuracy, the relative RMSEP, was used and averaged across all five

analytes to produce the average relative RMSEP. The measure will be

referred to herein as the average relative model error (ARME). A mathemat-

ical description is presented below:

ARME ¼ 100=m
Xm

s¼1

P p
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx pi � x prÞ

2
q

np

2
4

3
5

s

where n ¼ the average reference value for the respective analyte, p ¼ number

of samples predicted per analyte, xpi ¼ predicted analyte value, xpr ¼

reference analyte value, and m ¼ number of analytes predicted per model.

The ARME can be described as the prediction residual (predicted value 2

reference value) averaged across all samples for each analyte in a data set, then

divided by the average reference value for the respective analyte. This percen-

tage figure is averaged across all five analytes to provide a model average, the

ARME. Expressing the results in a relative manner prevents analytes, such as

glucose with its relatively higher concentrations, from disproportionately

influencing the average. The ARME is thus able to give a good overall

measure of the “goodness-of-fit” of a model by expressing the average

relative prediction residual across all five analytes, allowing for a relatively

easy comparison between models.

One of the many diagnostic tools available upon the formation of a PLS

model, and one that is central to this study, is the spectral regression coefficients

plot. In a regression model equation, regression coefficients are the numerical

coefficients that express the link between variation in the predictors (absorbance

values for each wavenumber in the infrared spectrum) and the variation in the

response (analyte concentration). The spectral regression coefficients plot
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summarizes the relationship between all predictors (absorbance values) for

a given response (analyte concentration). The spectral regression coefficients

can be computed for any number of factors. The spectral regression coeffi-

cients for 5 factors, for example, summarize the relationship between the pre-

dictors and the response as it is approximated by a model with 5 factors.[24]

Derivative spectra were used in preprocessing the data prior to PLS

regression. Spectral derivatives can remove baseline artefacts, such as

spectral offsets and sloping baselines. Spectral derivatives can also be con-

sidered as a pseudo resolution enhancement technique, because they are

able to highlight slight variations in the slope and contours of bands. All

these statistical methods were performed using the computer software

package, The Unscrambler 6.11 (Camo Process, Oslo, Norway).

RESULTS AND DISCUSSION

FTIR Spectroscopy

Spectra from each of the triplicate injections per sample from the synthetic

calibration sample were averaged to give a total of 32 averaged spectra

Raw spectra and second derivative spectra are shown in Fig. 2, with the

major spectral features of interest highlighted and labeled for band assign-

ments as shown in Table 4. Despite the complex chemical background of

Figure 2. Assignment of major spectral features to analytes and spectral labeling (see

Table 4).
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the media, the spectral signals originating from the added chemical analytes

can still be clearly discerned.

The removal of baseline features can be observed in the second-derivative

spectra. This improves quantification by removing some of the differences in

absorbance that are not related to any chemical component. The improve-

ments to spectral precision can be seen quite clearly in Fig. 2 with the under-

ivatized spectra showing a degree of “vertical spread” for a given absorbance

reading at a certain wavenumber, whereas the derivatized spectra exhibit

spectral features whose absorbances almost overlap. The power of spectral

derivatives has been demonstrated in our previous publications.[17,25,26] It is

also important to note the reversal of peak direction upon performing a

second derivative. In order to assess the impact of using selected spectral

“windows” compared with using a broader nonanalyte-specific region,

spectral region 1 (SR1) (3000–2800, 1800–800 cm21) and analyte-specific

spectral “windows” were defined, which are shown graphically as “boxed”

areas in Fig. 3 and are tabulated in Table 3.

Analyte Cross-Correlations and Erroneous Spectral Regression

Coefficients Plots

A number of research groups including ourselves[14,15,25,26] have successfully

employed mid-IR spectroscopy and multivariative statistics to tackle various

analytical problems, but most have not directly considered the possible cross-

correlations that may exist between various analytes in the sample. Spectral

regression coefficients plots from PLS models have seldom been used to

investigate whether or not the spectral features of the analytes in question

are in fact being used by the model for the prediction.

An example of a spectral regression coefficients plot for glucose from a

PLS-2 model of data set A using SR1 at factor 3 where a minimum prediction

error is reached for glucose (as determined by an error vs. factor plot) is

presented in Fig. 4. The pure component spectra of the five analytes are

also shown offset in Fig. 4 for comparison. This PLS model was calculated

from data set A together with reference measurements.

Table 3. Summary of spectral regions and windows for each analyte

Analyte Spectral region 1 (SR1) (cm21) Spectral windows (SW) (cm21)

Acetone 3000–2800, 1800–800 1750–1650, 1400–1330,

1280–1200

Acetate 3000–2800, 1800–800 1640–1280

Butanol 3000–2800, 1800–800 2990–2850, 1550–1350,

1130–900

Butyrate 3000–2800, 1800–800 2990–2850, 1640–1280

Glucose 3000–2800, 1800–800 1230–960
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From Fig. 4, it can be seen that despite selecting a factor for which

there is a minimum in the error versus factor plot from leave-out-one cross-

validated PLS model, only a few spectral features of glucose are discernable

in the factor 3 regressions coefficients plot. Features from all of the other four

Figure 3. Comparison spectral regression coefficients plots from data set “syn” for all

analytes at five factors, to spectral standards. Boxed areas indicate the analyte-specific

spectral window.
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Table 4. Band assignments

Spectral

labela
Band position

(cm21) Assignments Comments

a 2969 Asymmetric C–H

stretching vibration

of CH3 groups

Mostly n-butanol, with

some butyrate

contributions.

The 3000–2800 cm21 is

characteristic of general

C–H stretching

vibrations.

b 2940 Asymmetric C–H

stretching vibration

of CH2 groups

c 2879 Symmetric C–H

stretching vibration

of CH3 groups

d 1697 C55O (carbonyl)

stretching vibration

Characteristic of acetone.

1800–1600 cm21 is

characteristic of C55O

stretching vibrations.

e 1549 Asymmetric COO2

(carboxylate)

stretching vibration

Contributions from acet-

ate and butyrate. Their

individual absorbances

are at 1553 and

1542 cm21,

respectively.

f 1466 Asymmetric C–C–H

bending vibrations

Most contributions from

n-butanol, with some

from butyrate.

g 1410 Symmetric COO2

(carboxylate)

stretching vibration

Contributions from acet-

ate and butyrate. Their

individual absorbances

are at 1414 and

1409 cm21,

respectively.

h 1370 Symmetric C–C–H

bending vibrations

Acetone

i 1314 Symmetric C–C–H

bending vibrations

Butyrate

j 1240 C–C stretching

vibration

Acetone

k, l, m,

n, o

1154, 1107,

1080, 1033,

991

C–O stretching

vibrations

Mainly glucose. Charac-

teristic region for

strong carbohydrate

(sugars) absorptions.

Some n-butanol

contributions as well.

p 947 CH3 rocking vibration n-Butanol

aThe letter codes in column 1 refer to the letters in Fig. 2.
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analytes can be seen and are indicated by the vertical lines in Fig. 4, connect-

ing the particular spectral feature of the other analytes to the features in the

regression coefficients plot. The fact that there are clearly spectral features

of analytes other than glucose indicates that the predicting model is using

these spectral features in addition to glucose features for prediction. Such a

situation diminishes the robustness of the predictive model as changes in

the concentration of analytes other than glucose become predictive for

glucose. This situation indicates that systematic variations in the concentration

of these other analytes with respect to glucose have been modeled, with the

source of this systematic variation being the inherent analyte cross-correlation

of the fermentation system. It should be noted that the spectral features seen

are of opposite sign to the glucose features, indicating that the correlations

are negative in nature.

To further illustrate the existence of analyte cross-correlation, the PLS

model from data set A was used to predict for the synthetic data set (which

contains no analyte cross-correlations). The predicted versus measured plot

is shown in Fig. 5. The prediction for glucose at factor 3 showed quite a

poor prediction, with a very large vertical spread of predicted values for the

“high” and “low” glucose concentrations (see Table 2) of the synthetic data

set. A close examination of the spread of the predictions results reveals a

symmetric pattern around the center of the spread. Cross-referencing of

these samples to their actual analyte concentration revealed that samples at

the extremes of the spread of predicted results were a function of the

acetone and butanol concentrations. For the prediction of both low and high

glucose concentrations, those synthetic samples that were low in acetone

and butanol were predicted the highest. Conversely, samples high in

acetone and butanol were predicted the lowest. This is easily rationalized

when reference is made to Fig. 3, which contained the glucose regression

coefficient plot for factor 3 of data set A, whose model was used to predict

for the synthetic data set. The spectral features of acetone and butanol

Figure 4. Spectral regression coefficient plot of glucose from data set “A” at three

factors (where a minimum in the error vs. factor plot is reached) compared to all

five analyte spectral standards.
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among others were identified, in addition to those of glucose. Therefore, the

concentration of the analytes whose spectral features have been modeled as

being predictive for glucose have caused systemic interferences in the predic-

tion of glucose for the synthetic data set. Some of the other “structure” seen in

the vertical spread is due to various combinations of the other analyte concen-

trations (acetate and butyrate), which also showed some representation in the

glucose regression coefficients factor 3 plot. The effect of these other analytes

is less pronounced as their correlation with glucose is much less than either

acetone or butanol.

Despite the obvious presence of other analyte features, when a traditional

leave-out-one cross-validation is performed for the PLS model of data set A, at

three factors for glucose, a plot of predicted versus measured produces rela-

tively very good results (R2 ¼ 0.972, slope ¼ 0.974, offset ¼ 1.02, and

RMSEP ¼ 3.25). Therefore, if the common method of choosing the

“optimal” number of factors at or just before the point of minimum RMSEP

is followed exclusively as was done in this example, then nonoptimal

results are possible. What may appear to be very good results on the surface

based solely on a simple leave-out-one cross-validation on the one data set

could in fact be due to the use of spectral features other than those of the

analyte of interest.

The presence of analyte cross-correlation (negative and/or positive) in

the PLS models leads to changes in a certain analyte being predictive for

changes in other analytes, such as decrease in acetone or butanol absorbances

being predictive for an increase in glucose, or conversely, an increase in

glucose absorbances being predictive for a decrease in acetone or glucose.

This in fact would hold true if the fermentation were to behave in exactly

Figure 5. Prediction results of data set “A”: glucose at three factors, predicting for

data set “syn.”

Analysis of Acetone-Butanol-Ethanol Fermentation 691

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
2
:
5
9
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



the same manner each time and the ratios between the analytes remained

constant. However due to the unpredictable nature of fermentations, it is

unlikely that the conditions and performance of the fermentation would

always be identical.

Such problems reduce the robustness of a model, because unusual

changes in the concentration of a particular analyte, such as acetone or

glucose, which might not necessarily mean a proportional change in

glucose, would be interpreted as a change in the concentration of this

component and hence give erroneous values.

Synthetic Calibration

An appropriate way to remove these cross-correlations among analytes is to

calibrate the PLS model using data with no cross-correlations. This is

achieved by creating a synthetic sample set. A PLS model on this data set

(data set Syn) not only produced excellent results from the standard leave-

out-one cross-validation predictions, but the spectral regression coefficient

plots for each analyte (at the minimum prediction error) resembled very

closely those of the pure component spectra for each analyte, and most impor-

tantly they did not contain features that could be attributed to the other

analytes.

Figure 3 shows the comparisons between the spectral regression coeffi-

cients and the pure component spectra for each analyte. Boxed areas

highlight those spectral regions defined in Table 3 as analyte-specific

spectral windows (SW). These spectral regression coefficients plots show

that the PLS regression model for a given analyte has been able to find,

from a complex mixture of analytes and media background, the spectral

regions where each analyte of interest has its specific absorptions and has

been able to incorporate these into the predictive model for that, and only

that, analyte. This then allows for the formation of much more robust

models, models that are independent of other analyte correlations and are

hence applicable to a wider set of conditions. In addition to the excellent

results from the leave-out-one full cross-validation, the prediction errors

drop off dramatically after five factors, before rising very slightly in the

following factors as would be expected for a system in which there are only

five varying analytes.

Predictions

Various combinations of “real” (from both “normal,” “acid crash,” and

“normalþ acid crash,” see Table 1) and synthetic data were used to predict

for each other and vice versa leading to a total of eight predictions, the

M. Kansiz et al.692

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
2
:
5
9
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



results of which are given in Table 5. The existence of analyte cross-

correlations in PLS regression models and the subsequent reduction in

model robustness can be further illustrated by examining Table 5.

Three sets of prediction results are presented, two of which are different

from methods of PLS model factor selection and the third set being the actual

optimum results or “best-case scenario,” determined “after the fact” by

analysis of the actual prediction results at each factor to locate the “actual”

prediction error minimum. The two different factor selection methods

consist of one already discussed, the “minimum error from error vs. factor

plot,” which is a commonly used method, and the second, a new and alterna-

tive approach termed the “similarity measure” (SM), is a method where the

similarity of the spectral regression coefficients plots at each factor for each

analyte is compared and calculated to that of the analyte standard spectra.

The similarity measure was calculated by normalizing both regression coeffi-

cients spectra and standard spectra to the most intense band and determining

the sum of the squared differences at each absorbance value. This was calcu-

lated for all factors, with the factor having the lowest sum of squared differ-

ence being chosen as “optimal.” This method ensures that factors with

spectral regressions coefficient plots that most closely matched those

standard spectra are chosen, which in theory should lead to more accurate

and robust predictions. Table 6 lists the similarity measures for all models.

The data in Table 6 reinforce the notion that by selecting spectral regions

specific to the analyte of interest, significant improvements can be made. We

can see that the overall average and in fact for each analyte of each data set,

improvements in the “similarity measure” are observed in the use of SW over

SR1. This effect is most pronounced for analytes that have strong and rela-

tively uniquely positioned absorbances, such as acetone and glucose.

Together with such improvements has come significant reductions in the

number of factors required to obtain these minima. This indicates that the

removal of the spectral regions deemed to have no information has in fact

led to a data set containing more relevant information, which therefore

requires fewer factors to model.

A comparison within Table 6 was also made with the “similarity

measures” calculated for factors determined to be the minimum from an

“error vs. factor” plot. It can be clearly seen that for factors deemed to be

the minimum from an “error vs. factor” plot, they are far less closely

matched to the analyte standard spectra than for factors chosen by the “simi-

larity measure.” In terms of the effect on the end prediction quality, it can be

seen in Table 5 that some improvement can be seen for the results from factor

determination via the “similarity measure” over the factor determination via

“error vs. factor” plot. Additionally, the fewer factors required reduce the

risk of “over-fitting.”

A graphical comparison in made in Fig. 6, showing the regression coeffi-

cients plot for glucose at factor 3, determined to be the “optimum” via the

minimum in the “error vs. factor” plot and at factor 1, determined to be the
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minimum from the newly defined “similarity measure.” Included in Fig. 6 are

the standard spectra of both glucose and acetone. As was seen in Fig. 3, there

are many spectral features for the regression coefficients plot of glucose at

factor 3, most of which are not due to glucose itself but to other analytes.

However, when examining the regression coefficients plot for glucose at

factor 1, the “optimum” factor as determined by the “similarity measure,”

very distinct glucose features are clearly visible. In addition, distinct

acetone features are also apparent. As previously mentioned, this is due to

the strong correlation that exists between these two analytes. The “similarity

measure” is included within Fig. 6 with factor 3 at SM ¼ 82 and factor 1 at

SM ¼ 23, giving a numerical interpretation of the visual comparison. The

net effect of putting the two different methods of factor selection to the test

is displayed in Fig. 7.

Figure 7. Prediction results of data set “A”: glucose at one factor, predicting for data

set “syn.”

Figure 6. Spectral regression coefficient plot of glucose from data set “A” at three

factors (where a minimum in the error vs. factor plot is reached) and at one factor

(which has the best “similarity measure”) compared to glucose and acetone spectral

standards.
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It can be seen that when the common method of factor selection (the

minimum in an “error vs. factor” plot of cross-validated PLS model) was

used and factor 3 was selected as being the “optimum,” then rather poor

prediction results for the synthetic data would be obtained with the R2,

slope, offset, and RMSEP at 0.368, 0.406, 26.068, and 28.2 g/L, respectively

(see Fig. 5). On the other hand, if the factor selection from the cross-validated

PLS model was performed using the “similarity measure” between all the

regression coefficient plots for all factors and the standard spectrum for

glucose, then the “optimum” would have been determined as being factor 1.

The prediction results for glucose now using factor 1 are significantly

improved with the R2, slope, offset, and RMSEP now at 0.962, 0.777,

23.040, and 11.0 g/L. Splitting of the results into “high” and “low” groups

is again observed, as discussed previously, but this time it is only a function

of the acetone levels within the synthetic samples.

Examining prediction no. 3 (A–Syn), where data set A is predicting for

the synthetic data set, we see that when the spectral region 1 (SR1) is used,

we obtain a relatively poor result for the ARME of 72% with an average

number of factors across all five analytes at 13. Taking the same prediction,

but using spectral windows as defined in Table 3, we find an improvement

in ARME to 44% and a reduction in the average number of factors to 10.

Despite this improvement, this is still a relatively poor prediction. Data set

A comprises data from three separate “normal” fermentations (see Table 1).

Although being from three separate fermentations, because all are “normal,”

the same approximate correlations (ratio) between the various analytes still

exists. The same prediction conducted with spectral window selection

greatly improved the results, by not only removing spectral regions contribut-

ing noise but by also removing spectral regions containing analyte cross-

correlations that lead to inaccurate predictions. A similar trend is observed

for prediction no. 5 (B–Syn) with relatively high ARME and significant

improvement with the use of spectral windows. The predictor data set in

prediction no. 5, data set B, comprises data from two separate “acid-crash”

fermentations, where correlations, though now different to those of

“normal” fermentations as in data set A, still exist. When both data sets are

combined to form data set C and are used to predict for the synthetic data

set, as in prediction no. 1, we see improvements in the ARME for the

spectral region 1 and spectral windows to 59% and 32% respectively. These

improvements, albeit small, show that the combination of the data sets from

the “normal” and “acid-crash” fermentations has created more robust

models, both by increasing the number of samples, broadening the range of

analyte concentration, and, most importantly, by reducing the effect of

analyte cross-correlations. The observation of a reduction in the analyte

cross-correlation effect is best observed by examining the actual minima

“after the fact” data as opposed to the “minimum error from factor vs. error

plot.” Here the ARME is practically the same with either SR1 or SW. This

is in contrast to predictions no. 3 and no. 5 where we see significant differences
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in the ARME between SR1 and SW for both actual minima and “minimum

error from factor vs. error plot.” The fact that the ARMEs for both SR1 and

SW are similar indicates that a reduction in the analyte cross-correlations

has been achieved in the larger spectral range of SR1, hence using targeted

spectral window (SW), which would have otherwise removed the effects of

any analyte cross-correlations, have made very little difference. This effect

is achieved by using a PLS model derived from data sets that, although

individually containing their own analyte cross-correlations, when

combined the net effect of the differing analyte cross-correlations is nullified.

The actual minima are a measurement of best possible predictions, the

true optimum. Differences between the ARMEs of “actual minima” versus

those of factor selection via “minimum error from factor vs. error plot,” or

“similarity measure,” highlight the shortcomings of these methods. ARMEs

calculated from the actual minima are generally significantly lower than for

those calculated from the other methods of factor selection. It is also interest-

ing to note that, although in general the ARMEs from either factor selection,

“minimum error from factor vs. error plot” or “similarity measure” are not

appreciably different from one another, the average number of factors for

the overall model is much lower for the latter. The use of fewer factors

is preferred, as this reduces the likelihood of “over-fitting,” which could

further reduce accuracy and robustness by potentially including in the

model noise and other spectral contributions not related to the analyte of

interest.

When the synthetic data are used to predict for the real data sets A, B, and

C in predictions no. 4, 6, and 2, respectively, we see that the ARMEs are dra-

matically decreased to 12–17% from as high as 32–93%. This dramatic

increase in accuracy when predicting for three very different data sets can

be directly attributed to the fact that the PLS model derived from the

synthetic data is much more robust than those derived from the “real” fermen-

tation data. The primary reason being the lack of analyte cross-correlations,

and the effect of this can be observed in the spectral regression coefficient

plots, where all are matched very closely to the standard spectra (see

Fig. 3). As for prediction no. 1 with data set C, there is also very little differ-

ence between ARMEs from SR1 and SW indicating again that there are no

influences from analyte cross-correlations. Additionally, for the synthetic

PLS models, the differences between the ARMEs when calculated via the

two factor selection methods “minimum error from factor vs. error plot”

and “actual minima” are significantly less, indicating that both methods

produce results close to the “best-case scenario.” One difference between

the factor selection methods is as noted above, that the “similarity measure”

requires significantly fewer factors.

In order to ensure appropriate factor selection, one should not simply rely

on the “minimum error from the error vs. factor plot” of cross-validated PLS

model. Some form of a “similarity measure” between the regression coeffi-

cient plots and the standard spectra of the analyte(s) under investigation,
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such as that described here, should be conducted. In its most simple form, a

basic visual comparison between the regression coefficient plots and

standard analyte spectra will aid in determining the presence of spectral

features other than those of interest.

CONCLUSIONS

This study has demonstrated the usefulness of FTIR spectroscopy coupled to

SIA with PLS regression analysis for the simultaneous on-line measurement

of acetone, acetate, n-butanol, butyrate, and glucose in an ABE fermentation

under various conditions.

Employing a PLS regression model built from a synthetic calibration set,

analyte cross-correlations that are present in PLS regression models built

using only the reference values have been removed. Synthetic calibration

set models had lower prediction residuals than those predictions using

“real” data and required fewer factors. By careful examination of the

spectral regression coefficients plots, the presence of analyte cross-

correlations were recognized. Furthermore, by studying the spectral regression

coefficient plots and identifying analyte cross-correlations by the presence of

features other than those belonging to the analyte of interest, the optimal

selection of factors is possible and over-fitting is avoided.

The importance of selecting the factors whose regression coefficients plots

most resemble those of the analyte standard spectra have been demonstrated

and two different methods of “optimum” factor selection compared. The

results of this comparison have shown that by simply following the common

methods of factor selection, using the minimum in an “error vs. factor” plot

of cross-validated PLS model, that the cross-correlation of analytes is incorpor-

ated into the PLS model. This is evident in the appearance of spectral features

of other analytes, analytes that are correlated to analyte of interest. We have

demonstrated that improvements in the prediction results and a reduction of

number of “optimum” factors can be achieved when factors are chosen more

appropriately such that the regression coefficients plots at these factors more

closely resemble those of the analytes of interest. The use of the “similarity

measure” has been able to facilitate this more accurate factor selection.

In the instance where the formation of synthetic data sets is not possible,

we have shown that by ensuring the careful selection of factors via appropriate

factor selection methods such as the “similarity measure” together with the use

of spectral windows, that model robustness through the incorporation of truly

relevant spectral features has been improved. By taking this approach, we

have built more robust PLS regression models that are applicable to a

broader range of fermentation conditions and synthetic samples and are not

only valid for a certain set of ideal process conditions.

This method has the added advantages of being rapid, with up to

12 fermentation samples being analyzed per hour, (which is equivalent to
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60 analyte determinations), computer control, ease of automation, and minimal

reagent and sample consumption (1.5 mL), therefore generating minimal

waste.

The higher rates of sampling compared to conventional methods will

enable closer monitoring of the fermentation, which facilitates and allows

for the optimization of the fermentation so that it may be kept operational.

The adaptability and flexibility of the SIA system and the ability of

the ATR sampling technique to handle difficult and varied samples makes

this technique suitable for monitoring other fermentations and industrial

processes where rapid on-line measurement of one or more analytes is required.
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