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Abstract: Mid-infrared spectroscopy together with sequential injection analysis (SIA)
and partial least squares (PLS) regression analysis was used to monitor acetone-
butanol-ethanol (ABE) fermentations under different fermentation conditions. Five
analytes were simultaneously predicted (acetone, acetate, butyrate, n-butanol, and
glucose). In order to compare the overall model prediction ability, a relative average
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of the root mean square error of prediction (RMSEP) across all five analytes was
employed. To form a PLS model devoid of any cross-correlations between analytes,
a synthetic calibration data set was created by the SIA system. As a test of their robust-
ness, PLS models from synthetic samples and those from real fermentation samples
were compared and used to predict samples from the opposite data set and from inde-
pendent “acid-crash” fermentations. The PLS model developed from the synthetic
samples proved to be far more robust and accurate and used fewer factors than PLS
models from the real fermentations, which were found to contain analyte cross-
correlations. The use of synthetic data enabled more accurate selection of factors
and showed the importance of investigating spectral regression coefficients plots to
aid and confirm appropriate factor selection. In addition, an alternative method of
factor selection was proposed, using a “similarity measure” between the regression
coefficient plots of factors for certain analytes and their standard spectra. Predictions
using this method of factor selection over the common “minimum from an error vs.
factor” plot proved to be more accurate and used far fewer factors.

Keywords: ABE fermentation, analyte cross-correlations, mid-infrared spectroscopy
(FTIR), PLS

INTRODUCTION

Mid-infrared spectroscopy in the analysis of fermentations was introduced in
the early 1980s for the analysis of antibiotic fermentation samples,!"! analysis
of model fermentations,' feasibility studies for real-time process control of
fermentations,! and the investigation of pyruvic acid assimilation by
Escherichia coli.¥

To date, near-infrared spectroscopy has been more widely applied to
fermentation systems' ~*! than mid-infrared spectroscopy due to the ease of
sample handling, which allows aqueous solutions to be sampled in flow-
through cells with pathlengths in the millimeter and centimeter ranges, as
opposed to the few micrometers traditionally required in the mid-infrared.
In addition, the ready availability of fiberoptic materials in the near-infrared
has made in situ measurements practical.”! Although near-infrared spec-
troscopy can have sample handling advantages, it is lacking in qualitative
spectral information because spectra generally consist of broad overlapping
spectral features with little or no qualitative information. Mid-infrared
spectroscopy on the other hand is rich in both quantitative and qualitative
spectral information, making the interpretation of the spectral changes over
the course of a fermentation much easier because individual bands can be
assigned to particular chemical moieties of the analytes.

With recent improvements in instrumentation and in particular in
attenuated total reflection (ATR) probes for in situ measurement of
chemical reactions, the number of publications concerned with mid-infrared
spectroscopy for fermentations monitoring has increased.'°='" The use of
an ATR sampling probe is most advantageous when dealing with aqueous
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and particulate containing solutions, because the very small and constant
effective pathlength of the ATR eliminates the need for transmission cells.
ATR accessories typically have a depth of penetration of 1-2pm,
providing for very small effective pathlengths, therefore making for the
easy subtraction or ratioing of highly absorbing matrices such as water. One
important practical problem associated with the use of in situ ATR probes
is the potential for the development of biofilms on the probe surface, which
can interfere with the intended monitoring of the liquid samples.

For evaluation of the Fourier transform infrared (FTIR) spectroscopy
recorded from fermentations, multivariate statistical techniques, most
commonly partial least squares (PLS) regression, have been employed.
These data evaluation methods enable the simultaneous determination of
several analytes from within a complex media background. However, the
PLS method developed needs to be carefully prepared and analyzed to
ensure that a robust calibration model covering all possible combinations of
analyte concentrations is created. In this context, the analysis of possible
analyte cross-correlations is particularly useful. Cross-correlations between
various analytes within fermentations are well-known and are to be
expected due to the stoichiometry of the physiological processes of a micro-
biological cell. For example, for the acetone-butanol-ethanol (ABE)
fermentation!'® %! used in this study and previously.!'”! essentially glucose
is consumed, as acetone and n-butanol are produced. Therefore, the glucose
concentration is negatively correlated with acetone and n-butanol. Also,
because acetone and n-butanol are produced at the same time and from the
same source, they are positively correlated with each other, with approxi-
mately twice as much n-butanol as acetone being produced. Correlations
with or among acetate and butyrate, which are the other two analytes that
can be produced or consumed during glucose consumption, are much less
pronounced. These two components are present in relatively lower concen-
trations, with, in general, their concentrations starting off low and slowly
decreasing over the course of the fermentation.

For the sake of model robustness, it is important to carefully examine the
PLS model for evidence that only the spectral features of the analyte of
interest are being used in prediction calculations. The presence of analyte
cross-correlations in the calibration can significantly degrade the robustness
of the developed model. This is of particular importance when fermentations
are analyzed that proceed differently to those fermentations on which the
calibration has been based.

A possible solution to this problem is the use of synthetic samples devoid
of analyte cross-correlations for the construction of the PLS model. In this
paper, the impact of analyte cross-correlations on method robustness is
demonstrated. Furthermore, it is shown how the spectral regression
coefficients plots can efficiently be used to detect analyte cross-correlations
present in the calibration model. This paper follows on from a previous
study on the same fermentation system.!'”)
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EXPERIMENTAL
Organism

Clostridium beijerinckii NRRL B592 (capable of producing a mixture of
acetone, n-butanol, and ethanol) was obtained from the laboratory of
J. R. Gapes (Institute of Chemical Engineering, Fuel and Environmental
Technology, Vienna University of Technology, Vienna, Austria). A
previous high-solvent-producing and well-sporulated batch fermentation on
semisynthetic medium was used as spore stock.

Medium

A modified semisynthetic medium according to Ref.*!! was used for both
inoculum and batch cultures and contained per liter of distilled water the
following: glucose 60.0g, yeast extract 5.0g, ammonium acetate 3.0g,
KH,PO, 1.0g, K,HPO, 0.8 g, MgSO,-7H,O 1.0 g, cysteine hydrochloride
0.5 g, FeSO, - 7TH,0, and p-aminobenzoic acid 10 mg.

Inoculum Preparation

The medium for inoculation was made anaerobic by bubbling oxygen-free
sterile nitrogen for 10 min before autoclaving at 10°> Pa (121°C) for 16 min.
The inoculum precultures were prepared by injecting 10 mL of a spore sus-
pension into 330 mL of media in a 500 mL screw-cap bottle plugged with a
rubber stopper into which was placed a needle connected to a bicycle valve
via a short length of tubing. This acted as a pressure release valve to release
the buildup of carbon dioxide and hydrogen during fermentation. This
inoculum preculture was then heat shocked at 85°C for 10 min and cooled
rapidly in cold water before being placed in a 35°C incubator.

Batch Cultures in the Bioreactor
Fermentations No. 1, No. 2, and No. 3 “Normal”

The bioreactor was a three-necked 2-L glass vessel with a working volume of
1700 mL. All contents of the bioreactor including the pH probe and polytetra-
fluoroethylene (PTFE) sampling tubing (for mid-infrared spectroscopic measure-
ments) were autoclaved after the medium was made anaerobic by bubbling
oxygen-free sterile nitrogen for 20 min. After autoclaving at 10° Pa (121°C) for
25 min and until inoculation, oxygen-free sterile nitrogen was bubbled through
the medium to maintain anaerobic conditions while sitting the bioreactor in a
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cold-water bath. The batch culture was brought up to 35°C in a thermostated water
bath before being inoculated with 100 mL of a 20—24 hr inoculum preculture.
The pH was continuously monitored on-line, with optical density (615nm,
lcm plastic cuvette) measurements being taken for each sample. Samples
were collected (both spectra and for reference analysis) at regular intervals
over the course of the fermentation, up to 50 hr. Each individual fermentation
had 10-12 complete samples (spectra and reference analysis). The data from
fermentation no. 3 has been previously reported in Ref.!'”.

Fermentations No. 4 and No. 5 “Acid Crash”

These fermentation were performed exactly as for fermentations 1-3, except
that the pH was controlled at pH 7 via the automated addition of 2M KOH.
This was done in an attempt to induce an “acid-crash” fermentation, as it is
believed that the concentration of free acids play an important role in the
onset of an “acid crash.”'®?! Spectra and samples for reference analysis
were collected at regular intervals throughout the course of the fermentation.
Between 7 and 8 complete samples (spectra and reference analysis) were
collected for each fermentation.
A summary of the data sets used is present in Table 1.

Preparation and Measurement of Synthetic Calibration Standards No. 6

A full factorial design employing five variables (the five analytes: acetone,
acetate, butyrate, n-butanol, and glucose) at two concentration levels (high and
low concentrations, where the lower concentrations were one-fifth of the
higher concentrations) was calculated giving a total of 32 combinations (2°).
This full factorial design calculates all statistically possible combinations of the
high and low levels for all five analytes, hence giving a sample set in which all
cross-correlations between the analyte concentrations have been removed.

All analyte stock solutions for the automated preparation of the synthetic
calibration set were made up in volumetric flasks using distilled water. The
media background preparation method was modified from that described

Table 1. Summary of fermentations/experiments used to compile each data set

Data Number of ~ Fermentation/experiments from

set samples which data were collected Fermentation type

A 35 1,2,&3 Normal fermentation

B 15 4&5 Acid-crash fermentation
C 50 1,2,3,4,&5 Normal & acid-crash

fermentation
Syn. 32 6 Synthetic mixtures
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earlier with the acetate omitted, because this was added from an acetate stock
solution, and only 12g/L of glucose monohydrate was added to act as
the “low” glucose sample as opposed to the normal 60 g/L. To reduce the
complexity, combinations of high and low glucose and n-butanol were pre-
prepared in four (hiGhiB, hiGLoB, 1oGhiB, 1oGloB) 320-mL volumes in
500-mL Schott bottles. The n-butanol was added aseptically to the media
background after autoclaving. An additional 15.36 g of glucose monohydrate
was added to the bottles that required a “high” glucose level. The standard
solutions and all other reagents were of analytical grade quality. The acetate
and butyrate solutions were prepared from their acids (acetic acid and
n-butyric acid, respectively) and were neutralized by the addition of NaOH
pellets. The final glucose concentrations were determined by the reference
enzymatic assay method, because the exact glucose content of glucose mono-
hydrate is not known. The acetone, acetate, and butyrate solutions were added
automatically by the sequential injection analysis (SIA) system to the media
background (containing the glucose and n-butanol) in order to obtain the
desired final concentrations of the solutions to be measured. The final concen-
trations of the analytes and the stock solutions is presented in Table 2.

For analysis of the spectral regression coefficients plots, FTIR spectra of
pure aqueous standard solutions of the analytes were also required. Standards
were prepared with the following concentrations: acetone, 8 g/L; n-butanol,
14 g/L; glucose, 60 g/L; acetic acid, 4 g/L; and n-butyric acid, 4 g/L. The
pH of the acid solutions were increased to approximately 12, by the
addition of NaOH pellets, to deprotonate all of the acids.

The spectra of all of pure aqueous standard solutions and samples for the
synthetic calibration set were collected in the exact same manner as the spectra
for real fermentation samples.

Sequential Injection Analysis Manifold Coupled to the FTIR
Spectrometer

The SIA system was set up with a Cavro XP 3000 syringe pump (syringe size
2500 nL), 4-mL holding coil, and a Valco 14 port selection valve equipped

Table 2. Summary of synthetic calibration sample concentrations

High concentration (g/L) Low concentration (g/L)
Acetone 6.00 1.20
Acetate 4.00 0.80
Butyrate 4.00 0.80
n-Butanol 15.00 3.00
Glucose 49.0 (60.0)* 9.4 (12.0)¢

“Figures in parentheses indicate the actual amount of glucose
monohydrate weighed out.
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with an electric microactuator. PTFE tubing (i.d. 0.75 mm) was used except
for the sampling tubing from the fermenter, which had an i.d. of 0.97 mm.
A Bruker IFS-55 spectrometer (Bruker Optik, Ettlingen, Germany) equipped
with liquid nitrogen cooled mercury-cadmium-telluride (MCT) detector was
used for spectral acquisition. A diamond ATR cell (Spectroscopy Central,
Warrington, England) was employed with an in-house built flow-through
accessory. This enables the pumping through of solutions over the ATR
diamond surface with minimal dead-volume. All tubings and fittings were
obtained from Global FIA (Gig Harbour, WA, USA). The SIA system was
controlled by a personal computer, using the AnalySIA software package
from the Turku Centre for Biotechnology (Abo, Akademi University and
University of Turku). This software was also used to trigger the FTIR spec-
trometer for the exact timing of the collection of spectra. A schematic
diagram showing the experimental system is shown in Fig. 1.

FTIR On-line Fermentation Monitoring

A sample measurement cycle involves the aspiration of 1.5mL of sample
directly from the fermenter into the holding coil, followed by a plug of
250 wL of 1 M NaOH and 250 pL of distilled water. The addition of NaOH
is necessary to bring the pH of the solution to be analyzed to approximately
10. This is to ensure that all of the acids (acetate and butyrate) are in a
deprotonated state, well above their pKa’s of 4.75 and 4.82, respectively.
After pH adjustment, 2000 pL of this solution is then transferred into the

Fermentor/Bioreactor

On-line pH [ Nitrogen purge line
probe

sample inlet line

FTIR- .
Spectrometer]  yyaote

Water Selection
Valve

hJ

Mixiniz,
Chamber
2500 pL /

Syringe 5% Na,CO; 1M NaOH Magnetic
Pump Stirrer

Figure 1. Schematic of SIA system.
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mixing chamber where it is stirred by a small magnetic bead for 2 min. This
allows sufficient time for degassing (CO,) and complete mixing. Sub-
sequently, 1.7 mL of this solution is pumped into the ATR flow-through cell
at a rate of 720 nL/min, during which time the spectrometer is automatically
triggered to collect the required spectra. Spectra were collected between 4000
and 700cm ™" at 8cm ™' resolution with 128 scans. A macro was written that
enabled the recording of spectra upon receiving a trigger from the AnalySIA
software. New background spectra were collected with distilled water in the
cell, before the pumping through of each sample. Each sample was injected
three times with three spectra recorded from each sample injection, giving
in total nine spectra for each sampling. The triplicate spectra for each
injection were averaged and used in the subsequent analysis. After spectral
acquisition, all tubing, mixing chamber, and the ATR cell were washed,
using the SIA setup with 2.5mL of an aqueous 5% Na,COj solution to
remove any biofilms. Subsequently, the flow system is washed again twice
with 2.5mL of distilled water. All these steps are performed automatically
by the computer-controlled SIA setup.

Reference Measurements

The solvents (acetone and n-butanol) together with the acids (acetic and
butyric) were determined simultaneously by gas chromatography based on a
modified method of Thompson et al.”**! To 1 mL of clarified sample (centri-
fuged at 25,000 x g for 5min) is added from a Pasteur pipette 1 drop of
concentrated sulfuric acid and 100 pL of a 40g/L n-propanol internal
standard solution. A model GC-9A (Shimadzu Corp., Kyoto, Japan) GC
was used, equipped with a flame ionization detector and a glass column
(3.2mm by 2.6 m) packed with Chromosorb 101 (Supelco, Inc., Bellefonte,
PA, USA) with nitrogen gas (80 mL/min) as the carrier gas. A temperature
program: 150°C (11.5min), rising at 30°C/min to 190°C, for 7.2 min was
used. The injector port temperature was set to 220°C and the detector tempera-
ture to 170°C. Glucose was determined using the enzymatic UV method
(340nm) test kit (Boehringer Mannheim cat. no. 716251, R-Biopharm
GmbH, Darmstadt, Germany). All reference analyses were performed in
triplicate. The precision of the reference methods compared with the FTIR
predicted results have been reported previously.!'”!

Data Analysis

The multivariative statistical method of partial least squares (mean-centered)
was employed to create calibration models to relate the spectra to the known
and established reference measurements. A PLS-1 method was used to create
models for data sets where only one variable is being predicted. This is the
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case where individual spectral window per analyte is to be employed. A PLS-2
method was employed where spectral region 1 (3000—2800, 1800—800cm ™ ')
was used for all five analytes. This method enabled one model to be calculated
for more than one analyte at a time.

All PLS models were developed with a leave-out-one cross-validation
process (leaves one sample at a time out of the model-forming calculations).
This sample is then predicted using this newly created model, and its predic-
tion values are compared to the reference values. This process is repeated until
all the samples have been left out once. It is by this method that the predicted
versus measured values plot is constructed and prediction error versus factor
plot are determined. It is from the minimum in this latter plot that the
“optimum” number of factors for predictions are commonly chosen.

With large data sets and a number of measures of predictive model quality
(as determined from a predicted vs. measure plot), such as root mean square
error (RMSEP), R2, slope, and offset, it is difficult to compare the performance
of the various models predicting for the various data sets. Consequently, in
order to more easily compare the results from each model, a measure of
model accuracy, the relative RMSEP, was used and averaged across all five
analytes to produce the average relative RMSEP. The measure will be
referred to herein as the average relative model error (ARME). A mathemat-
ical description is presented below:

m | S0 Cep = xpr)
ARME = 100/m ) [ ==V 22 70
s=1 np

N

where n = the average reference value for the respective analyte, p = number
of samples predicted per analyte, x,; = predicted analyte value, x, =
reference analyte value, and m = number of analytes predicted per model.

The ARME can be described as the prediction residual (predicted value —
reference value) averaged across all samples for each analyte in a data set, then
divided by the average reference value for the respective analyte. This percen-
tage figure is averaged across all five analytes to provide a model average, the
ARME. Expressing the results in a relative manner prevents analytes, such as
glucose with its relatively higher concentrations, from disproportionately
influencing the average. The ARME is thus able to give a good overall
measure of the “goodness-of-fit” of a model by expressing the average
relative prediction residual across all five analytes, allowing for a relatively
easy comparison between models.

One of the many diagnostic tools available upon the formation of a PLS
model, and one that is central to this study, is the spectral regression coefficients
plot. In a regression model equation, regression coefficients are the numerical
coefficients that express the link between variation in the predictors (absorbance
values for each wavenumber in the infrared spectrum) and the variation in the
response (analyte concentration). The spectral regression coefficients plot
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summarizes the relationship between all predictors (absorbance values) for
a given response (analyte concentration). The spectral regression coefficients
can be computed for any number of factors. The spectral regression coeffi-
cients for 5 factors, for example, summarize the relationship between the pre-
dictors and the response as it is approximated by a model with 5 factors.**

Derivative spectra were used in preprocessing the data prior to PLS
regression. Spectral derivatives can remove baseline artefacts, such as
spectral offsets and sloping baselines. Spectral derivatives can also be con-
sidered as a pseudo resolution enhancement technique, because they are
able to highlight slight variations in the slope and contours of bands. All
these statistical methods were performed using the computer software
package, The Unscrambler 6.11 (Camo Process, Oslo, Norway).

RESULTS AND DISCUSSION
FTIR Spectroscopy

Spectra from each of the triplicate injections per sample from the synthetic
calibration sample were averaged to give a total of 32 averaged spectra
Raw spectra and second derivative spectra are shown in Fig. 2, with the
major spectral features of interest highlighted and labeled for band assign-
ments as shown in Table 4. Despite the complex chemical background of

ICOSC
acetate

ol &/butyrate
306
% ’ n-butanol A i
g acetone ' o acetfme !
) v o UV S

Rt

Arbitrary Units
]
e
£
-
=
B
=

ap i
h
¢ f _ le

3000 2800 1800 1600 1400 1200 1000 800
Wavenumber (cm'')

Figure 2. Assignment of major spectral features to analytes and spectral labeling (see
Table 4).
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Table 3. Summary of spectral regions and windows for each analyte

Analyte Spectral region 1 (SR1) (em™) Spectral windows (SW) (cm™ Y

Acetone 3000-2800, 1800-800 1750-1650, 1400-1330,
1280-1200

Acetate 3000-2800, 1800—-800 1640-1280

Butanol 3000-2800, 1800-800 2990-2850, 1550-1350,
1130-900

Butyrate 3000-2800, 1800-800 2990-2850, 1640-1280

Glucose 3000-2800, 1800-800 1230-960

the media, the spectral signals originating from the added chemical analytes
can still be clearly discerned.

The removal of baseline features can be observed in the second-derivative
spectra. This improves quantification by removing some of the differences in
absorbance that are not related to any chemical component. The improve-
ments to spectral precision can be seen quite clearly in Fig. 2 with the under-
ivatized spectra showing a degree of “vertical spread” for a given absorbance
reading at a certain wavenumber, whereas the derivatized spectra exhibit
spectral features whose absorbances almost overlap. The power of spectral
derivatives has been demonstrated in our previous publications.!'”*>2%! 1t is
also important to note the reversal of peak direction upon performing a
second derivative. In order to assess the impact of using selected spectral
“windows” compared with using a broader nonanalyte-specific region,
spectral region 1 (SR1) (3000—2800, 1800—800cm ') and analyte-specific
spectral “windows” were defined, which are shown graphically as “boxed”
areas in Fig. 3 and are tabulated in Table 3.

Analyte Cross-Correlations and Erroneous Spectral Regression
Coefficients Plots

A number of research groups including ourselves''*'>2>2%! have successfully
employed mid-IR spectroscopy and multivariative statistics to tackle various
analytical problems, but most have not directly considered the possible cross-
correlations that may exist between various analytes in the sample. Spectral
regression coefficients plots from PLS models have seldom been used to
investigate whether or not the spectral features of the analytes in question
are in fact being used by the model for the prediction.

An example of a spectral regression coefficients plot for glucose from a
PLS-2 model of data set A using SR1 at factor 3 where a minimum prediction
error is reached for glucose (as determined by an error vs. factor plot) is
presented in Fig. 4. The pure component spectra of the five analytes are
also shown offset in Fig. 4 for comparison. This PLS model was calculated
from data set A together with reference measurements.
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Figure 3. Comparison spectral regression coefficients plots from data set “syn” for all
analytes at five factors, to spectral standards. Boxed areas indicate the analyte-specific
spectral window.

From Fig. 4, it can be seen that despite selecting a factor for which
there is a minimum in the error versus factor plot from leave-out-one cross-
validated PLS model, only a few spectral features of glucose are discernable
in the factor 3 regressions coefficients plot. Features from all of the other four
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Table 4. Band assignments

689

Spectral Band position

label? (cm™ 1) Assignments Comments

a 2969 Asymmetric C—H Mostly n-butanol, with
stretching vibration some butyrate
of CH; groups contributions.

b 2940 Asymmetric C-H The 3000-2800cm ' is
stretching vibration characteristic of general
of CH, groups C—H stretching

vibrations.

c 2879 Symmetric C-H
stretching vibration
of CH; groups

d 1697 C=0 (carbonyl) Characteristic of acetone.
stretching vibration 1800—1600cm ' is

characteristic of C=0
stretching vibrations.

e 1549 Asymmetric COO Contributions from acet-
(carboxylate) ate and butyrate. Their
stretching vibration individual absorbances

are at 1553 and
1542cm™ ',
respectively.

f 1466 Asymmetric C—-C-H Most contributions from
bending vibrations n-butanol, with some

from butyrate.

g 1410 Symmetric COO Contributions from acet-
(carboxylate) ate and butyrate. Their
stretching vibration individual absorbances

are at 1414 and
1409cm ™',
respectively.

h 1370 Symmetric C-C-H Acetone
bending vibrations

i 1314 Symmetric C—C-H Butyrate
bending vibrations

j 1240 C—C stretching Acetone
vibration

k, 1, m, 1154, 1107, C-O stretching Mainly glucose. Charac-

n, o 1080, 1033, vibrations teristic region for
991 strong carbohydrate
(sugars) absorptions.
Some n-butanol
contributions as well.
p 947 CH; rocking vibration n-Butanol

“The letter codes in column 1 refer to the letters in Fig. 2.
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Figure 4. Spectral regression coefficient plot of glucose from data set “A” at three
factors (where a minimum in the error vs. factor plot is reached) compared to all
five analyte spectral standards.

analytes can be seen and are indicated by the vertical lines in Fig. 4, connect-
ing the particular spectral feature of the other analytes to the features in the
regression coefficients plot. The fact that there are clearly spectral features
of analytes other than glucose indicates that the predicting model is using
these spectral features in addition to glucose features for prediction. Such a
situation diminishes the robustness of the predictive model as changes in
the concentration of analytes other than glucose become predictive for
glucose. This situation indicates that systematic variations in the concentration
of these other analytes with respect to glucose have been modeled, with the
source of this systematic variation being the inherent analyte cross-correlation
of the fermentation system. It should be noted that the spectral features seen
are of opposite sign to the glucose features, indicating that the correlations
are negative in nature.

To further illustrate the existence of analyte cross-correlation, the PLS
model from data set A was used to predict for the synthetic data set (which
contains no analyte cross-correlations). The predicted versus measured plot
is shown in Fig. 5. The prediction for glucose at factor 3 showed quite a
poor prediction, with a very large vertical spread of predicted values for the
“high” and “low” glucose concentrations (see Table 2) of the synthetic data
set. A close examination of the spread of the predictions results reveals a
symmetric pattern around the center of the spread. Cross-referencing of
these samples to their actual analyte concentration revealed that samples at
the extremes of the spread of predicted results were a function of the
acetone and butanol concentrations. For the prediction of both low and high
glucose concentrations, those synthetic samples that were low in acetone
and butanol were predicted the highest. Conversely, samples high in
acetone and butanol were predicted the lowest. This is easily rationalized
when reference is made to Fig. 3, which contained the glucose regression
coefficient plot for factor 3 of data set A, whose model was used to predict
for the synthetic data set. The spectral features of acetone and butanol



02:59 30 January 2011

Downl oaded At:

Analysis of Acetone-Butanol-Ethanol Fermentation 691

40 4 R2=10.368

Slope = 0.406
30 4 Offset=-6.068 @
RMSEP=282 /L fow acetone =

20 low butanol b

@ b 4
0 | i ©
/
* high acctonc
@ /high butanol

Predicted Glucose Concentration (g/L)

0 10 20 30 40 50 60
Measured Glucose Concentration (g/L)

Figure 5. Prediction results of data set “A”: glucose at three factors, predicting for
data set “syn.”

among others were identified, in addition to those of glucose. Therefore, the
concentration of the analytes whose spectral features have been modeled as
being predictive for glucose have caused systemic interferences in the predic-
tion of glucose for the synthetic data set. Some of the other “structure” seen in
the vertical spread is due to various combinations of the other analyte concen-
trations (acetate and butyrate), which also showed some representation in the
glucose regression coefficients factor 3 plot. The effect of these other analytes
is less pronounced as their correlation with glucose is much less than either
acetone or butanol.

Despite the obvious presence of other analyte features, when a traditional
leave-out-one cross-validation is performed for the PLS model of data set A, at
three factors for glucose, a plot of predicted versus measured produces rela-
tively very good results (R*=0.972, slope = 0.974, offset = 1.02, and
RMSEP = 3.25). Therefore, if the common method of choosing the
“optimal” number of factors at or just before the point of minimum RMSEP
is followed exclusively as was done in this example, then nonoptimal
results are possible. What may appear to be very good results on the surface
based solely on a simple leave-out-one cross-validation on the one data set
could in fact be due to the use of spectral features other than those of the
analyte of interest.

The presence of analyte cross-correlation (negative and/or positive) in
the PLS models leads to changes in a certain analyte being predictive for
changes in other analytes, such as decrease in acetone or butanol absorbances
being predictive for an increase in glucose, or conversely, an increase in
glucose absorbances being predictive for a decrease in acetone or glucose.
This in fact would hold true if the fermentation were to behave in exactly
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the same manner each time and the ratios between the analytes remained
constant. However due to the unpredictable nature of fermentations, it is
unlikely that the conditions and performance of the fermentation would
always be identical.

Such problems reduce the robustness of a model, because unusual
changes in the concentration of a particular analyte, such as acetone or
glucose, which might not necessarily mean a proportional change in
glucose, would be interpreted as a change in the concentration of this
component and hence give erroneous values.

Synthetic Calibration

An appropriate way to remove these cross-correlations among analytes is to
calibrate the PLS model using data with no cross-correlations. This is
achieved by creating a synthetic sample set. A PLS model on this data set
(data set Syn) not only produced excellent results from the standard leave-
out-one cross-validation predictions, but the spectral regression coefficient
plots for each analyte (at the minimum prediction error) resembled very
closely those of the pure component spectra for each analyte, and most impor-
tantly they did not contain features that could be attributed to the other
analytes.

Figure 3 shows the comparisons between the spectral regression coeffi-
cients and the pure component spectra for each analyte. Boxed areas
highlight those spectral regions defined in Table 3 as analyte-specific
spectral windows (SW). These spectral regression coefficients plots show
that the PLS regression model for a given analyte has been able to find,
from a complex mixture of analytes and media background, the spectral
regions where each analyte of interest has its specific absorptions and has
been able to incorporate these into the predictive model for that, and only
that, analyte. This then allows for the formation of much more robust
models, models that are independent of other analyte correlations and are
hence applicable to a wider set of conditions. In addition to the excellent
results from the leave-out-one full cross-validation, the prediction errors
drop off dramatically after five factors, before rising very slightly in the
following factors as would be expected for a system in which there are only
five varying analytes.

Predictions

Various combinations of “real” (from both “normal,” “acid crash,” and
“normal + acid crash,” see Table 1) and synthetic data were used to predict
for each other and vice versa leading to a total of eight predictions, the
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results of which are given in Table 5. The existence of analyte cross-
correlations in PLS regression models and the subsequent reduction in
model robustness can be further illustrated by examining Table 5.

Three sets of prediction results are presented, two of which are different
from methods of PLS model factor selection and the third set being the actual
optimum results or “best-case scenario,” determined ‘“after the fact” by
analysis of the actual prediction results at each factor to locate the “actual”
prediction error minimum. The two different factor selection methods
consist of one already discussed, the “minimum error from error vs. factor
plot,” which is a commonly used method, and the second, a new and alterna-
tive approach termed the “similarity measure” (SM), is a method where the
similarity of the spectral regression coefficients plots at each factor for each
analyte is compared and calculated to that of the analyte standard spectra.
The similarity measure was calculated by normalizing both regression coeffi-
cients spectra and standard spectra to the most intense band and determining
the sum of the squared differences at each absorbance value. This was calcu-
lated for all factors, with the factor having the lowest sum of squared differ-
ence being chosen as “optimal.” This method ensures that factors with
spectral regressions coefficient plots that most closely matched those
standard spectra are chosen, which in theory should lead to more accurate
and robust predictions. Table 6 lists the similarity measures for all models.

The data in Table 6 reinforce the notion that by selecting spectral regions
specific to the analyte of interest, significant improvements can be made. We
can see that the overall average and in fact for each analyte of each data set,
improvements in the “similarity measure” are observed in the use of SW over
SR1. This effect is most pronounced for analytes that have strong and rela-
tively uniquely positioned absorbances, such as acetone and glucose.
Together with such improvements has come significant reductions in the
number of factors required to obtain these minima. This indicates that the
removal of the spectral regions deemed to have no information has in fact
led to a data set containing more relevant information, which therefore
requires fewer factors to model.

A comparison within Table 6 was also made with the “similarity
measures” calculated for factors determined to be the minimum from an
“error vs. factor” plot. It can be clearly seen that for factors deemed to be
the minimum from an “error vs. factor” plot, they are far less closely
matched to the analyte standard spectra than for factors chosen by the “simi-
larity measure.” In terms of the effect on the end prediction quality, it can be
seen in Table 5 that some improvement can be seen for the results from factor
determination via the “similarity measure” over the factor determination via
“error vs. factor” plot. Additionally, the fewer factors required reduce the
risk of “over-fitting.”

A graphical comparison in made in Fig. 6, showing the regression coeffi-
cients plot for glucose at factor 3, determined to be the “optimum” via the
minimum in the “error vs. factor” plot and at factor 1, determined to be the
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Figure 6. Spectral regression coefficient plot of glucose from data set “A” at three
factors (where a minimum in the error vs. factor plot is reached) and at one factor
(which has the best “similarity measure”) compared to glucose and acetone spectral
standards.

minimum from the newly defined “similarity measure.” Included in Fig. 6 are
the standard spectra of both glucose and acetone. As was seen in Fig. 3, there
are many spectral features for the regression coefficients plot of glucose at
factor 3, most of which are not due to glucose itself but to other analytes.
However, when examining the regression coefficients plot for glucose at
factor 1, the “optimum” factor as determined by the “similarity measure,”
very distinct glucose features are clearly visible. In addition, distinct
acetone features are also apparent. As previously mentioned, this is due to
the strong correlation that exists between these two analytes. The “similarity
measure” is included within Fig. 6 with factor 3 at SM = 82 and factor 1 at
SM = 23, giving a numerical interpretation of the visual comparison. The
net effect of putting the two different methods of factor selection to the test
is displayed in Fig. 7.

457 R2=0962

404 Slope=0.777
Offset = -3.040
357 RMSEP=11.0gL

low acetone

high acetone

Predicted Glucose Concentration (g/L)

5 . : . ;
0 10 20 30 40 50 60
Measured Glucose Concentration (g/L)

Figure 7. Prediction results of data set “A”: glucose at one factor, predicting for data
set “syn.”
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It can be seen that when the common method of factor selection (the
minimum in an “error vs. factor” plot of cross-validated PLS model) was
used and factor 3 was selected as being the “optimum,” then rather poor
prediction results for the synthetic data would be obtained with the R?
slope, offset, and RMSEP at 0.368, 0.406, —6.068, and 28.2 g/L, respectively
(see Fig. 5). On the other hand, if the factor selection from the cross-validated
PLS model was performed using the “similarity measure” between all the
regression coefficient plots for all factors and the standard spectrum for
glucose, then the “optimum” would have been determined as being factor 1.
The prediction results for glucose now using factor 1 are significantly
improved with the Rz, slope, offset, and RMSEP now at 0.962, 0.777,
—3.040, and 11.0 g/L. Splitting of the results into “high” and “low” groups
is again observed, as discussed previously, but this time it is only a function
of the acetone levels within the synthetic samples.

Examining prediction no. 3 (A—Syn), where data set A is predicting for
the synthetic data set, we see that when the spectral region 1 (SR1) is used,
we obtain a relatively poor result for the ARME of 72% with an average
number of factors across all five analytes at 13. Taking the same prediction,
but using spectral windows as defined in Table 3, we find an improvement
in ARME to 44% and a reduction in the average number of factors to 10.
Despite this improvement, this is still a relatively poor prediction. Data set
A comprises data from three separate “normal” fermentations (see Table 1).
Although being from three separate fermentations, because all are “normal,”
the same approximate correlations (ratio) between the various analytes still
exists. The same prediction conducted with spectral window selection
greatly improved the results, by not only removing spectral regions contribut-
ing noise but by also removing spectral regions containing analyte cross-
correlations that lead to inaccurate predictions. A similar trend is observed
for prediction no. 5 (B—Syn) with relatively high ARME and significant
improvement with the use of spectral windows. The predictor data set in
prediction no. 5, data set B, comprises data from two separate “acid-crash”
fermentations, where correlations, though now different to those of
“normal” fermentations as in data set A, still exist. When both data sets are
combined to form data set C and are used to predict for the synthetic data
set, as in prediction no. 1, we see improvements in the ARME for the
spectral region 1 and spectral windows to 59% and 32% respectively. These
improvements, albeit small, show that the combination of the data sets from
the “normal” and “acid-crash” fermentations has created more robust
models, both by increasing the number of samples, broadening the range of
analyte concentration, and, most importantly, by reducing the effect of
analyte cross-correlations. The observation of a reduction in the analyte
cross-correlation effect is best observed by examining the actual minima
“after the fact” data as opposed to the “minimum error from factor vs. error
plot.” Here the ARME is practically the same with either SR1 or SW. This
is in contrast to predictions no. 3 and no. 5 where we see significant differences
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in the ARME between SR1 and SW for both actual minima and “minimum
error from factor vs. error plot.” The fact that the ARMESs for both SR1 and
SW are similar indicates that a reduction in the analyte cross-correlations
has been achieved in the larger spectral range of SR1, hence using targeted
spectral window (SW), which would have otherwise removed the effects of
any analyte cross-correlations, have made very little difference. This effect
is achieved by using a PLS model derived from data sets that, although
individually containing their own analyte cross-correlations, when
combined the net effect of the differing analyte cross-correlations is nullified.

The actual minima are a measurement of best possible predictions, the
true optimum. Differences between the ARMEs of “actual minima” versus
those of factor selection via “minimum error from factor vs. error plot,” or
“similarity measure,” highlight the shortcomings of these methods. ARMEs
calculated from the actual minima are generally significantly lower than for
those calculated from the other methods of factor selection. It is also interest-
ing to note that, although in general the ARMEs from either factor selection,
“minimum error from factor vs. error plot” or “similarity measure” are not
appreciably different from one another, the average number of factors for
the overall model is much lower for the latter. The use of fewer factors
is preferred, as this reduces the likelihood of “over-fitting,” which could
further reduce accuracy and robustness by potentially including in the
model noise and other spectral contributions not related to the analyte of
interest.

When the synthetic data are used to predict for the real data sets A, B, and
C in predictions no. 4, 6, and 2, respectively, we see that the ARMEs are dra-
matically decreased to 12—17% from as high as 32-93%. This dramatic
increase in accuracy when predicting for three very different data sets can
be directly attributed to the fact that the PLS model derived from the
synthetic data is much more robust than those derived from the “real” fermen-
tation data. The primary reason being the lack of analyte cross-correlations,
and the effect of this can be observed in the spectral regression coefficient
plots, where all are matched very closely to the standard spectra (see
Fig. 3). As for prediction no. 1 with data set C, there is also very little differ-
ence between ARMEs from SR1 and SW indicating again that there are no
influences from analyte cross-correlations. Additionally, for the synthetic
PLS models, the differences between the ARMEs when calculated via the
two factor selection methods “minimum error from factor vs. error plot”
and “actual minima” are significantly less, indicating that both methods
produce results close to the “best-case scenario.” One difference between
the factor selection methods is as noted above, that the “similarity measure”
requires significantly fewer factors.

In order to ensure appropriate factor selection, one should not simply rely
on the “minimum error from the error vs. factor plot” of cross-validated PLS
model. Some form of a “similarity measure” between the regression coeffi-
cient plots and the standard spectra of the analyte(s) under investigation,
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such as that described here, should be conducted. In its most simple form, a
basic visual comparison between the regression coefficient plots and
standard analyte spectra will aid in determining the presence of spectral
features other than those of interest.

CONCLUSIONS

This study has demonstrated the usefulness of FTIR spectroscopy coupled to
SIA with PLS regression analysis for the simultaneous on-line measurement
of acetone, acetate, n-butanol, butyrate, and glucose in an ABE fermentation
under various conditions.

Employing a PLS regression model built from a synthetic calibration set,
analyte cross-correlations that are present in PLS regression models built
using only the reference values have been removed. Synthetic calibration
set models had lower prediction residuals than those predictions using
“real” data and required fewer factors. By careful examination of the
spectral regression coefficients plots, the presence of analyte cross-
correlations were recognized. Furthermore, by studying the spectral regression
coefficient plots and identifying analyte cross-correlations by the presence of
features other than those belonging to the analyte of interest, the optimal
selection of factors is possible and over-fitting is avoided.

The importance of selecting the factors whose regression coefficients plots
most resemble those of the analyte standard spectra have been demonstrated
and two different methods of “optimum” factor selection compared. The
results of this comparison have shown that by simply following the common
methods of factor selection, using the minimum in an “error vs. factor” plot
of cross-validated PLS model, that the cross-correlation of analytes is incorpor-
ated into the PLS model. This is evident in the appearance of spectral features
of other analytes, analytes that are correlated to analyte of interest. We have
demonstrated that improvements in the prediction results and a reduction of
number of “optimum” factors can be achieved when factors are chosen more
appropriately such that the regression coefficients plots at these factors more
closely resemble those of the analytes of interest. The use of the “similarity
measure” has been able to facilitate this more accurate factor selection.

In the instance where the formation of synthetic data sets is not possible,
we have shown that by ensuring the careful selection of factors via appropriate
factor selection methods such as the “similarity measure” together with the use
of spectral windows, that model robustness through the incorporation of truly
relevant spectral features has been improved. By taking this approach, we
have built more robust PLS regression models that are applicable to a
broader range of fermentation conditions and synthetic samples and are not
only valid for a certain set of ideal process conditions.

This method has the added advantages of being rapid, with up to
12 fermentation samples being analyzed per hour, (which is equivalent to
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60 analyte determinations), computer control, ease of automation, and minimal
reagent and sample consumption (1.5mL), therefore generating minimal
waste.

The higher rates of sampling compared to conventional methods will
enable closer monitoring of the fermentation, which facilitates and allows
for the optimization of the fermentation so that it may be kept operational.

The adaptability and flexibility of the SIA system and the ability of
the ATR sampling technique to handle difficult and varied samples makes
this technique suitable for monitoring other fermentations and industrial
processes where rapid on-line measurement of one or more analytes is required.
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